R.1-R.3 Properties of Real Numbers and Order of Operations

The Structure of the Set of Real Numbers:

set – a collection of objects called elements or members, usually having the same property

Notation:

roster notation - the elements of a set are listed in braces { } and separated by commas

Examples:

{1,2,3} - finite set $\mathbb{N} = \{1,2,3,...\}$ - natural or counting numbers (infinite set) $\mathbb{W} = \{0,1,2,3,...\}$ - whole numbers $\mathbb{Z} = \{...,-2,-1,0,1,2,...\} = \{0,\pm 1,\pm 2,...\}$ - integers

Notation:

 $5 \in \mathbb{N}$ means 5 is an element of \mathbb{N}

 $-1 \notin \mathbb{N}$ means -1 is not an element of \mathbb{N}

 \emptyset or { } denotes an **empty** (or **null**) set - the set that contains no elements

set-builder notation – the elements are determined by listing a property (or properties) that
they need to satisfy
{x ∈ S|x has property P}

the set of all elements x from the set S such that x has a given property P

Examples:

 $\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}$ - **rational** numbers (any fraction, finite decimal, or infinite but repeating decimal)

 $\mathbb{IQ} = \{x | x \notin \mathbb{Q}\}$ - irrational numbers (any infinite but non-repeating decimal, root of a prime

number, constant π or e)

 $\mathbb{Z}_{-} = \{ x \mid x \in \mathbb{Z} \text{ and } x < 0 \} = \{ x \in \mathbb{Z} \mid x < 0 \}$ - negative integers

 $\mathbb{R} = \{x \mid \}$ - real numbers (numbers that correspond to any point on a number line – those are called coordinates)

Example 1:Prove that the following numbers are rational:a) $1.\overline{5}$ b) $0.23\overline{41}$

opposite (additive inverse) – a number with a reverse sign; ex. a and -a

reciprocal (multiplicative inverse) – a number with switched the numerator with the denominator; ex. a and $\frac{1}{a}$

a absolute value – a distance of a number from zero; $\begin{vmatrix} a \\ a \end{vmatrix} = \begin{cases} a & if \ a \ge 0 \\ -a & if \ a < 0 \end{cases}$ so absolute value of a number is always positive!

Practice: 1. Evaluate:

- a) -|-5| = b) |2-6|-|-7|-|2| =
- 2. Place one of the signs $\langle , \rangle, \leq , \geq , =$ to make the statement true.
- -5 -7 |7| |-7| -|5| |-5|

 -|0| |-0| |x| x 0 |-x|

Interval Notation:

Example 2: Complete the table.

set-builder notation	graph	interval notation
$\{x x>2\}$		
$\{x x \le -2\}$		
$\{x -1 \le x \le 2\}$		
	-3 5	
	••••••••••••••••••••••••••••••••••••••	
		(-6,7)

Lecture R.1-R.3

Order on the Number Line:

ABCDEObservations:-numbers are getting larger and larger to The arrow on the number line indicates to -	
How to find the distance between two given quantities on the	number line?
5 and 8 −7 and −11	a and b
<i>Practice:</i>3. Using the following graph, finda) the total profit or loss for the years 2007 through 2010,	Company Profits and Losses
b) the average profit or loss per year for the years 2007 through 2010,	100 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 -100 -142 -225 -185
c) the difference between the profit or loss in 2010 and that in 2009,	–300 2007 2008 2009 2010 Year
d) the difference between the profit or loss in 2008 and that	in 2007,
Order of Operations: <u><i>Recall:</i></u> sign rule (for multiplication, division, or double s	sign) $\begin{pmatrix} + & + \\ - & - \\ + & - \\ - & + \end{pmatrix} = \begin{pmatrix} + \\ + \\ - \\ - \end{pmatrix}$

В	Е	D	Μ	Α	S
brackets grouping signs (division bar, absolute value)	exponents	÷ left to	• right	+ left to	- right

Math 085 (Anna K.)

exponent
$$n$$

 $a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ times}}$ so
power base a

so
$$(-3)^2 = (-3)(-3) = 9$$
 but $-3^2 = -3 \cdot 3 = -9$

Practice:

$$2 + 2 \cdot 2 = 7 - 3(-5 + 2) =$$

$$-[(-3)^2 - (4-9)^2] = \frac{-3}{4} \div \frac{5}{-6} =$$

$$\left(\frac{-2}{3}\right)^3 + \frac{2}{3} = |-5 - 16 \div 2| =$$

$$-4|2-\sqrt{0.25}| = \frac{-3^2-(-2)^3}{\sqrt{16}-3|4-5|} =$$

$$11 - 2|8 \cdot (-2) \div (-2)^2| =$$

<u>Remember!</u>

$$-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}$$
 and $\frac{-a}{-b} = \frac{a}{b}$, also $\sqrt{negative} = DNE$, so $\sqrt{x^2} = |x|$

Evaluate Expressions:

Example 3: Given that a = -3, b = 4, and $c = -\frac{1}{2}$, evaluate the following:

a)
$$2a \div 3b$$
 b) $\frac{\sqrt{a+b}-3a^2}{2c}$

Properties of Operations on Real Numbers:

Commutative Property	a + b = b + a	and	ab = ba
Associative Property	a + (b + c) = (a + b) + c	and	a(bc) = (ab)c
Inverse Property	a + (-a) = 0	and	$\frac{1}{a} \cdot a = 1 if \ a \neq 0$
Identity Property	a + 0 = 0 + a = a	and	$a \cdot 1 = 1 \cdot a = a$
Multiplication by 0	$a \cdot 0 = 0$		
Distributive Property	$a(b \pm c) = ab \pm ac = (b \pm c)$	c)a	

Example 4: 2x(3 + y) = 2x(3) + 2x(y) = 6x + 2xy but $2x(3)(y) \neq 2x(3) \cdot 2x(y)$

term - a product of numbers and variables, including variable expressions ex. 2x, πr^2 , $-\frac{2}{3}x(x-1)$, $-x^2y$, 1 like terms - terms with the same variables raised to the same powers ex. 2m, -m, $\frac{m}{2}$ but not $2x^2y$, $-xy^2$ Like terms can be combined by adding their numerical coefficients.

ex.
$$2 + \frac{x}{2} + 5x^2 - x + 1 - 3x^2 =$$

Practice:

- 4. Simplify.
- a) -(-3x+6y) 2(x-3y) =

b)
$$3x(2y) - 5x(y-2) - 7 =$$