R.1-R. 3 Properties of Real Numbers and Order of Operations

The Structure of the Set of Real Numbers:

set - a collection of objects called elements or members, usually having the same property

Notation:
roster notation - the elements of a set are listed in braces $\}$ and separated by commas

Examples:
$\{1,2,3\}$ - finite set
$\mathbb{N}=\{1,2,3, \ldots\}$ - natural or counting numbers (infinite set)
$\mathbb{W}=\{0,1,2,3, \ldots\}$ - whole numbers
$\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=\{0, \pm 1, \pm 2, \ldots\}$ - integers
Notation:
$5 \in \mathbb{N} \quad$ means 5 is an element of \mathbb{N}
$-1 \notin \mathbb{N}$ means -1 is not an element of \mathbb{N}
\emptyset or $\}$ denotes an empty (or null) set - the set that contains no elements
set-builder notation - the elements are determined by listing a property (or properties) that they need to satisfy

Examples:
$\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q \neq 0\right\}$ - rational numbers (any fraction, finite decimal, or infinite but repeating decimal)
$\mathbb{I} \mathbb{Q}=\{\boldsymbol{x} \mid \boldsymbol{x} \notin \mathbb{Q}\}$ - irrational numbers (any infinite but non-repeating decimal, root of a prime number, constant π or e)
$\mathbb{Z}_{-}=\{x \mid x \in \mathbb{Z}$ and $x<0\}=\{x \in \mathbb{Z} \mid x<0\}$ - negative integers
$\mathbb{R}=\{\boldsymbol{x} \mid\}$ - real numbers (numbers that correspond to any point on a number line - those are called coordinates)

Example 1: Prove that the following numbers are rational:
a) $\quad 1 . \overline{5}$
b) $0.23 \overline{41}$
opposite (additive inverse) - a number with a reverse sign; ex. a and -a
reciprocal (multiplicative inverse) - a number with switched the numerator with the denominator; ex. \boldsymbol{a} and $\frac{\mathbf{1}}{\boldsymbol{a}}$
absolute value - a distance of a number from zero; $|a|= \begin{cases}a & \text { if } a \geq 0 \\ -a & \text { if } a<0\end{cases}$ so absolute value of a number is always positive!

Practice:

1. Evaluate:
a) $-|-5|=$
b) $\quad|2-6|-|-7|-|2|=$
2. Place one of the signs $<,>, \leq, \geq$, = to make the statement true.
$-5 \quad-7$
|7| |-7|
$-|5| \quad|-5|$
$-|0| \quad|-0|$
$|x| \quad x$
$0 \quad|-x|$

Interval Notation:

Example 2: Complete the table.

set-builder notation	graph	interval notation
$\{x \mid x>2\}$		
$\{x \mid x \leq-2\}$		
$\{x \mid-1 \leq x \leq 2\}$	\qquad	
	$\xrightarrow[1]{\circ}$	
	\qquad	$(-6,7)$
	\longleftrightarrow	

Order on the Number Line:

Match the following numbers with the letters on the number line: $-2,3,-\pi, 5, \pi$

$$
\begin{array}{llll}
\text { A } & \text { B } & \text { C D }
\end{array}
$$

Observations: - numbers are getting larger and larger towards the

- The arrow on the number line indicates the \qquad
How to find the distance between two given quantities on the number line?
\qquad

5 and 8 \qquad -7 and -11
\boldsymbol{a} and \boldsymbol{b}

Practice:

3. Using the following graph, find
a) the total profit or loss for the years 2007 through 2010,
b) the average profit or loss per year for the years 2007 through 2010,
c) the difference between the profit or loss in 2010 and that

Company Profits and Losses
 in 2009,
d) the difference between the profit or loss in 2008 and that in 2007,

Order of Operations:
Recall: \quad sign rule (for multiplication, division, or double sign)

B
brackets exponents
grouping signs (division bar, absolute value)

so $\quad(-3)^{2}=(-3)(-3)=9 \quad$ but $-3^{2}=-3 \cdot 3=-9$

Practice:
$2+2 \cdot 2=$

$$
\begin{aligned}
& 7-3(-5+2)= \\
& \frac{-3}{4} \div \frac{5}{-6}=
\end{aligned}
$$

$-\left[(-3)^{2}-(4-9)^{2}\right]=$
$\left(\frac{-2}{3}\right)^{3}+\frac{2}{3}=$
$|-5-16 \div 2|=$
$-4|2-\sqrt{0.25}|=$
$\frac{-3^{2}-(-2)^{3}}{\sqrt{16}-3|4-5|}=$
$11-2\left|8 \cdot(-2) \div(-2)^{2}\right|=$

Remember!

$$
-\frac{a}{b}=\frac{-a}{b}=\frac{a}{-b} \text { and } \frac{-a}{-b}=\frac{a}{b}, \text { also } \sqrt{\text { negative }}=D N E, \text { so } \sqrt{x^{2}}=|x|
$$

Evaluate Expressions:

Example 3: Given that $a=-3, b=4$, and $c=-\frac{1}{2}$, evaluate the following:
a) $2 a \div 3 b$
b) $\frac{\sqrt{a+b}-3 a^{2}}{2 c}$

Properties of Operations on Real Numbers:

Commutative Property $\quad a+b=b+a$
Associative Property
Inverse Property
Identity Property
Multiplication by 0
Distributive Property

$$
a(b \pm c)=a b \pm a c=(b \pm c) a
$$

and $\quad a b=b a$
and $\quad a(b c)=(a b) c$
and $\frac{1}{a} \cdot a=1$ if $a \neq 0$
and $\quad a \cdot 1=1 \cdot a=a$

Example 4:
$2 x(3+y)=2 x(3)+2 x(y)=6 x+2 x y \quad$ but $\quad 2 x(3)(y) \neq 2 x(3) \cdot 2 x(y)$
term - a product of numbers and variables, including variable expressions
ex. $2 x, \quad \pi r^{2}, \quad-\frac{2}{3} x(x-1), \quad-x^{2} y, \quad 1$
like terms - terms with the same variables raised to the same powers
ex. $2 m,-m, \frac{m}{2}$ but not $2 x^{2} y,-x y^{2}$
Like terms can be combined by adding their numerical coefficients.
ex. $\quad 2+\frac{x}{2}+5 x^{2}-x+1-3 x^{2}=$

Practice:

4. Simplify.
a) $-(-3 x+6 y)-2(x-3 y)=$
b) $3 x(2 y)-5 x(y-2)-7=$
