1.1 Linear and Absolute Value Equations

linear (or first-degree) equation in single variable -

an equation that can be written in the form Ax + B = 0, where $A, B \in \mathbb{R}$.

solution or **root** of an equation – the value of the variable that will satisfy the equation **solution set** – a set of all possible solutions

ex. 2x - 7 = 3 5x - 1 = 5x + 4 1 = 1

conditional	contradiction	identity
one solution	no solutions	infinitely many solutions
		(all real numbers)

equivalent equations – equations with the same solution sets

We can produce equivalent equations by

- adding to both sides of the equation the same value,
- multiplying both sides of the equation by the same, nonzero value

Example 1: Solve.

a)
$$4[2x - (3 - x) + 5] = -(2 + 7x)$$
 b) $\frac{1}{8}(2x - 1) + 3 = \frac{5}{6}(5 - 3x)$

Absolute Value Equations:

Remember: Absolute value represents "distance from zero", so |x| = 2 tells us that x is 2 steps from zero; therefore x = 2 or x = -2.

p

 \boldsymbol{q}

Generally, to solve an absolute value equation |expression| = k, we must consider **two cases** expression = k or expression = -k

and solve them separately.

The solution set usually consists of two numbers $\{p, q\}$.

Math 096 (Anna K.)	Lec	ture 1.1		2
Example 1: Solve.				
a) $ 3x + 2 = 14$	b)	2 x - 1 = 3	isolate abs. value first!	

c) $\left|\frac{3x+2}{3}\right| = 5$ d) |1-x| = -2 abs. value can't be negative!

Example 2: A retailer determines the retail price of a coat by first computing 175% of the wholesale price of the coat and then adding a markup of \$8.00. What is the wholesale price of a coat that has a retail price of \$156.75?