L. 5 Operations on Sets and Compound Inequalities

Sets can be added, multiplied, or subtracted as follows:

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

PRODUCT or INTERSECTION or COMMON PART

$A \backslash B=\{x \mid x \in A$ and $x \notin B\}$
DIFFERENCE
Example 1:
Let $A=\{1,2,3,4\}, \quad B=\{1,3,5\}, \quad C=\{5,6\}$. Find:
a) $A \cap B=$
b) $A \cup B=$
c) $A \backslash B=$
d) $B \cap C=$
e) $\quad A \cap C=$
f) $A \cup B \cup C=$
g) $\quad A \cap B \cap C=$
h) $C \cap \emptyset=$

Example 2: Find:
a) $(-1,3) \cap[2,5]=$
b) $(-1,3) \cup[2,5]=$
c) $(-\infty, 5] \cap[-3, \infty)=$
d) $(-\infty,-3] \cap[-3, \infty)=$
e) $(-\infty,-3] \cap(-\infty, 5)=$
f) $(-\infty,-3] \cup(-\infty, 5)=$
compound inequalities - system of inequalities with the connecting word AND or OR, for example: $\quad 2 \leq x<3, \quad$ or $\quad x<2$ or $x \geq 3$
(or equivalently $2 \leq x$ and $x<3$)
solution set:

Example 3: Solve. Give the answer in interval notation and graph the solution set.
a) $2<3 x-1<5$ notice that these inequalities could be written equivalently as $2<3 x-1$ and $3 x-1<5$
b) $2>3 x-1$ or $3 x-1 \geq 5$
special cases:
c) $5-7 x>19$ and $2-3 x<-4$
d) $4 x-4<-8$ or $4 x-4 \leq 12$
e) $2 x-7 \geq 3$ or $7-x \geq 0$

Example 4: Let \boldsymbol{P} represent the percent of children covered by private insurance, \boldsymbol{M} the percent covered by Medicaid, and N the percent not covered. Using the information from the table, give the years that the following is true:
a) $\quad P \geq 68$ and $M \geq 18$
b) $\quad P \geq 68$ or $M \geq 18$
c) $\quad P \geq 67$ and $N \leq 12.5$

Source: U.S. Department of Health and Human Services
d) $\quad P \geq 67$ or $N \leq 12.5$

