Absolute Value Equations and Inequalities 2.7

Remember: Absolute value represents "distance from zero", so |x| = 2 tells us that x is 2 steps from zero; therefore x = 2 or x = -2. -2 0 2 ·

Generally, to solve an absolute value equation

|expression| = k,

expression = k or expression = -k

we must consider two cases

and solve them separately.

The solution set usually consists of two numbers $\{p, q\}$.

Example 1: Solve.

a) |3x + 2| = 14

b) 2|x|-1=3 isolate abs. value first!

c) $\left| \frac{3x+2}{3} \right| = 5$

d) |1-x|=-2 abs. value can't be negative!

To solve equations with two absolute values, follow the pattern: |expr.A| = |expr.B| expr.A = expr.B or expr.A = -expr.B

$$expr. A = expr. B$$
 or $expr. A = -expr. B$

Example 2: Solve.

a)
$$\left| \frac{x}{2} - 5 \right| = \left| 3 - \frac{x}{2} \right|$$

Generally, there are two types of absolute value inequalities:

Example 3: Solve. Graph the solution on a number line and state it in interval notation.

a)
$$|-1-2x| < 5$$

b)
$$\left| \frac{x-2}{3} \right| \ge 4$$

c)
$$-|2x - 3| \ge -7$$

d)
$$\left| \frac{1}{3}x + 7 \right| + 5 > 6$$

Watch these special cases:

e)
$$|5x + 2| < -8$$

f)
$$-2|3x - 4| < 16$$