L. 6 Absolute Value Equations and Inequalities

Remember: Absolute value represents "distance from zero", so $|x|=2$ tells us that x is 2 steps from zero; therefore $x=2$ or $x=-2$.

Generally, to solve an absolute value equation

$$
\mid \text { expression } \mid=k,
$$ we must consider two cases

$$
\text { expression }=k \text { or expression }=-k
$$

and solve them separately.
The solution set usually consists of two numbers $\{p, q\}$.

Example 1: Solve.
a) $|3 x+2|=14$
b) $2|x|-1=3$ isolate abs. value first!
c) $\quad\left|\frac{3 x+2}{3}\right|=5$
d) $\quad|1-x|=-2 \quad$ abs. value can't be negative!

To solve equations with two absolute values, follow the pattern:

$$
\begin{gathered}
|\operatorname{expr} . A|=|\operatorname{expr} . B| \\
\operatorname{expr} . A=\operatorname{expr} . B \text { or } \operatorname{expr} \cdot A=-\operatorname{expr} . B
\end{gathered}
$$

Example 2: Solve.
$\left|\frac{x}{2}-5\right|=\left|3-\frac{x}{2}\right|$

Generally, there are two types of absolute value inequalities:

$$
\xrightarrow{\substack{\mid \text { expression } \mid<k \\-k<\text { expression }<k}}
$$

$$
\begin{gathered}
\mid \text { expression } \mid>k \\
\text { expression }<-k \text { or expression }>k
\end{gathered}
$$

Example 3: Solve. Graph the solution on a number line and state it in interval notation.
a) $|-1-2 x|<5$
b) $\quad\left|\frac{x-2}{3}\right| \geq 4$
c) $\quad-|2 x-3| \geq-7$
d) $\left|\frac{1}{3} x+7\right|+5>6$

Watch these special cases:
e) $|5 x+2|<-8$
f) $\quad-2|3 x-4|<16$

