Lecture 1.5

1

1.5 Inequalities

Recall: \cup - union of sets; $A \cup B = \{x | x \in A \text{ or } x \in B\}$;

 \cap - intersection of sets; $A \cap B = \{x | x \in A \text{ and } x \in B\}$

➤ linear inequalities (solve the same way as equations, except when multiplying or dividing by a negative number, reverse the inequality sign)

Example 1: Solve, graph, and state your answer in interval notation.

$$\frac{1}{3}(2x+5) - 6 \ge 5x - 8$$

compound inequalities (watch the "or" or "and" connection)

Example 2: Solve, graph, and state your answer in interval notation.

a)
$$2x - 5 \le 3$$
 or $3x - 4 > 11$

b)
$$-1 < \frac{2x+5}{4} \le 3$$

c)
$$2x - 5 \le 3$$
 or $3x + 4 > 10$

d)
$$x - 2 \le 3$$
 and $4 - x > 1$

> absolute value inequalities

$$|Expr.| < k$$

$$\downarrow \\ -k < Expr. < k$$

$$|Expr.| > k$$
 $Expr. < -k$ or $Expr. > k$
 $-k$

2

Example 3: Solve, graph, and state your answer in interval notation.

a)
$$|1 - 2x| \le 5$$

b)
$$|4x - 3| > 1$$

> polynomial inequalities

- o make one side = 0;
- o factor completely the other side;
- o find all **critical values** (real zeros of the polynomial) to divide the number line into critical intervals;
- o analyse the signs of all factors in all critical intervals;
- o read the answer from the sign diagram

Example 4: Solve using sign analysis.

$$x^3 - 3x^2 \ge 10x$$

> rational inequalities

- o make one side = 0 and the other a single fraction;
- o factor completely the numerator and denominator;
- o find all **critical values** of the numerator and denominator;
- o divide the number line into critical intervals;
- o analyse the signs of all factors in all critical intervals;
- o read the answer from the sign diagram excluding the numbers that are not in the domain

Example 5: Solve using sign analysis.

a)
$$\frac{x-8}{x-4} < 3$$

Math 096 (Anna K.) Lecture 1.5

b)
$$\frac{(5x-3)^2}{2x+1} \le 0$$

Applications:

Example 6: A shoe manufacturer finds that the monthly revenue R from a particular style of aerobics shoes is given by $R = 312p - 3p^2$, where p is the selling price of one pair of shoes. Find the price interval for which the monthly revenue is greater than or equal to \$5925.