3.2 Analysis of Graphs of Polynomial Functions; Maximization Problems

Graph the following functions and observe their behaviour at infinities.
$f(x)=x^{4}$
$f(x)=x^{4}-2 x^{2}+x-3$
$f(x)=-x^{4}$
$f(x)=-x^{4}+x^{2}+2$

$g(x)=x^{3}$
$g(x)=x^{3}-x$
$f(x)=-x^{3}$
$f(x)=-x^{3}+x^{2}+x$

Conclusion:

The end behaviour of a polynomial function $\boldsymbol{P}(\boldsymbol{x})=\boldsymbol{a}_{n} x^{n}+\boldsymbol{a}_{\boldsymbol{n - 1}} \boldsymbol{x}^{\boldsymbol{n - 1}}+\cdots+\boldsymbol{a}_{\mathbf{0}}$ is determined by the dominating term (the leading term).
n even:
n odd:

$$
a_{n}>0
$$

$\boldsymbol{a}_{\boldsymbol{n}}<0$

$a_{n}>0$

$\boldsymbol{a}_{\boldsymbol{n}}<0$

To graph a polynomial function $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$

- find the roots (x-intercepts) and \boldsymbol{y}-intercepts;
- use the end behaviour and test selected points if necessary
- check for symmetry (even or odd function)

Example 1: Graph $f(x)=x^{4}-4 x^{2}$

How many real roots a polynomial can have?
If r is a root of a polynomial $f(x)$, then it is a solution of $f(x)=0$, and by the Factor Theorem, $f(x)$ is divisible by $(x-r)$.
Therefore, the number of real roots of $f(x)$ is the same as the number of different linear factors of $f(x)$.

Conclusion: The maximum number of roots (zeros) of an n-th degree polynomial is

Example 2: Find the zeros of $f(x)=-\frac{1}{8}(x-1)_{4}^{3}(x-3)(x+2)^{2}$ and then graph $f(x)$.

Notice:

- factor ($x+2$) appears twice; we say that -2 is the root of multiplicity 2
- factor $(x-1)$ appears three times; we say that 1 is the root of multiplicity 3
- even multiplicity - the graph looks like
- odd multiplicity - the graph looks like

turning points - points on the graph when the function changes its direction
The turning points are the maximum or minimum points in the locality of the turning point.

Definition:

$>$ A function f has a local minimum at a point c iff there is an open interval $I \subset D_{f}$ containing c, such that $\boldsymbol{f}(\boldsymbol{c}) \leq \boldsymbol{f}(\boldsymbol{x})$ for all $x \in I . \boldsymbol{f}(\boldsymbol{c})$ is the local minimum value.
$>$ A function f has a local maximum at a point c iff there is an open interval $I \subset D_{f}$ containing c, such that $\boldsymbol{f}(\boldsymbol{c}) \geq \boldsymbol{f}(\boldsymbol{x})$ for all $x \in I . \boldsymbol{f}(\boldsymbol{c})$ is the local maximum value.
$>$ If $I=D_{f}$, we talk about the absolute (global) maximum or minimum (extremum).
Example 3: Let $f(x)=x^{3}-2 x^{2}-x+1$. Using a graphing calculator,
a) find all local extreme points of f,
b) find all zeros of f.

If we can't find the exact root by factoring, it is useful to know that a root exists in a specified interval.

Intermediate Value Theorem:

Let $f(x)$ be a polynomial with real coefficients. If $a<b$ are two real numbers s.t. $f(a)$ and $f(b)$ are opposite in sign, then there exists at least one real zero in the interval (a, b).

Example 4: Verify (using IVT) that the polynomial $f(x)=$
 $-x^{4}+x^{3}+5 x-1$ has a zero between 0.1 and 0.2.

Example 5: A) Give the transformations needed to obtain a graph of $Q(x)=(x+2)^{4}-3$ from the graph of $P(x)=x^{4}$. Then, graph both functions on the same grid.
B) The point $(2,16)$ belongs to the graph of $P(x)$. What are the coordinates of the corresponding point on the graph of $Q(x)$?

Example 6: A rectangular piece of cardboard measuring 12 in. by 18 in. is to be made into a box with an open top by cutting equal-size squares from each corner and folding up the sides. Let x represent the length of a side of each such square, in inches.
a) Give the restrictions on x.
b) Determine a function V that gives the volume of the box as a function of x.
c) For what value of x will the volume be a maximum? What is this maximum volume?
d) For what values of x will the volume be greater than 80 in 3 ?

Example 7: Find the value of x in the diagram that will maximize the area of rectangle $A B C D$.

