Lecture 3.3, 3.4

3.3, 3.4 Zeros of Polynomial Functions and Fundamental Theorem of Algebra

How to find rational zeros of a polynomial with integer coefficients?

Rational Zero Theorem

Let $P(x) = a_n x^n + \dots + a_1 x + a_0$ be a polynomial with integer coefficients $(a_n \neq 0)$. If a reduced rational number $\frac{p}{q}$ is a root of the polynomial *P*, then

- p divides the constant coefficient a_0 , and
- q divides the leading coefficient a_n .

Example 1: use Rational Zero Theorem to find all possible rational zeros of

a)
$$P(x) = x^3 - 2x^2 - 5x + 6$$

b)
$$P(x) = 6x^4 + 23x^3 + 19x^2 - 8x - 4$$

Example 2: Find the zeros of each polynomial. State the multiplicity of each zero that is not simple. (*Def.:* simple zero - zero of multiplicity one)

a)
$$P(x) = x^3 - 4x^2 - 3x$$

b)
$$P(x) = x^3 + 3x^2 - 6x - 8$$

c)
$$P(x) = 2x^4 - 17x^3 + 4x^2 + 35x - 24$$

Lecture 3.3, 3.4

Example 3: For what value of *x* will the volume of the given solid be 112 cubic inches?

Fundamental Theorem of Algebra

Any n^{th} degree $(n \ge 1)$ polynomial *P* with complex coefficients has at least one complex zero.

This means that any polynomial $P(x) = a_n x^n + \dots + a_1 x + a_0$, where $n \ge 1$, $a_n \ne 0$, and $a_n, a_{n-1}, \dots, a_0 \in \mathbb{C}$, can be expressed in a factored form $P(x) = a_n (x - c_1)(x - c_2) \cdot \dots \cdot (x - c_n)$, where c_1, c_2, \dots, c_n are some complex roots of *P*, not necessarily different.

Example 4: Solve the equation (*in complex numbers, if needed*).

a)
$$5x^3 - 6x^2 - 29x + 6 = 0$$

b)
$$x^3 - 3x^2 + 4x - 12 = 0$$

Conjugate Rule for Polynomials with Real Coefficients

If a complex number a + bi (where $b \neq 0$) is a zero of a polynomial with real coefficients, then the conjugate a - bi is also a zero of this polynomial.

Example 5: Find a polynomial P with real coefficients, satisfying the following conditions:

a) *P* is a 3rd degree polynomial; -2, 1 - i are zeros of *P*

b) *P* is a 4th degree polynomial; *i* is a zero of *P* with multiplicity 2; P(1) = 2