3.3, $3.4 \quad$ Zeros of Polynomial Functions and Fundamental Theorem of Algebra

How to find rational zeros of a polynomial with integer coefficients?

Rational Zero Theorem

Let $\boldsymbol{P}(\boldsymbol{x})=\boldsymbol{a}_{\boldsymbol{n}} \boldsymbol{x}^{\boldsymbol{n}}+\cdots+\boldsymbol{a}_{\boldsymbol{1}} \boldsymbol{x}+\boldsymbol{a}_{\mathbf{0}}$ be a polynomial with integer coefficients ($a_{n} \neq 0$).
If a reduced rational number $\frac{\boldsymbol{p}}{\boldsymbol{q}}$ is a root of the polynomial P, then

- \boldsymbol{p} divides the constant coefficient $\boldsymbol{a}_{\mathbf{0}}$, and
- \boldsymbol{q} divides the leading coefficient $\boldsymbol{a}_{\boldsymbol{n}}$.

Example 1: use Rational Zero Theorem to find all possible rational zeros of
a) $P(x)=x^{3}-2 x^{2}-5 x+6$
b) $\quad P(x)=6 x^{4}+23 x^{3}+19 x^{2}-8 x-4$

Example 2: Find the zeros of each polynomial. State the multiplicity of each zero that is not simple. (Def.: simple zero - zero of multiplicity one)
a) $P(x)=x^{3}-4 x^{2}-3 x$
b) $\quad P(x)=x^{3}+3 x^{2}-6 x-8$
c) $\quad P(x)=2 x^{4}-17 x^{3}+4 x^{2}+35 x-24$

Example 3: For what value of x will the volume of the given solid be 112 cubic inches?

Fundamental Theorem of Algebra

Any $n^{\text {th }}$ degree $(n \geq 1)$ polynomial P with complex coefficients has at least one complex zero.

This means that any polynomial $P(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$, where $n \geq 1, a_{n} \neq 0$, and $a_{n}, a_{n-1}, \ldots, a_{0} \in \mathbb{C}$, can be expressed in a factored form

$$
P(x)=a_{n}\left(x-c_{1}\right)\left(x-c_{2}\right) \cdot \ldots \cdot\left(x-c_{n}\right),
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are some complex roots of P, not necessarily different.
Example 4: Solve the equation (in complex numbers, if needed).
a) $5 x^{3}-6 x^{2}-29 x+6=0$
b) $x^{3}-3 x^{2}+4 x-12=0$

Conjugate Rule for Polynomials with Real Coefficients

If a complex number $\boldsymbol{a}+\boldsymbol{b i}$ (where $b \neq 0$) is a zero of a polynomial with real coefficients, then the conjugate $\boldsymbol{a}-\boldsymbol{b i}$ is also a zero of this polynomial.

Example 5: Find a polynomial P with real coefficients, satisfying the following conditions:
a) $\quad P$ is a $3^{\text {rd }}$ degree polynomial; $-2,1-i$ are zeros of P
b) $\quad P$ is a $4^{\text {th }}$ degree polynomial; i is a zero of P with multiplicity $2 ; P(1)=2$

