3.5 Graphs of Rational Functions and Their Applications

rational function - any function of the form $\boldsymbol{f}(\boldsymbol{x})=\frac{\boldsymbol{P}(\boldsymbol{x})}{\boldsymbol{Q}(\boldsymbol{x})}$, where $P(x)$ and $Q(x)$ are any polynomials, and $Q(x) \neq 0$;
The domain of a rational function consists of all real numbers except for those that will make the denominator $Q(x)$ equal to 0 . So $\boldsymbol{D}_{\boldsymbol{f}}=\mathbb{R} \backslash\{\boldsymbol{x} \mid \boldsymbol{Q}(\boldsymbol{x})=\mathbf{0}\}$

Example 1: Analyse the graph of the function $G(x)=\frac{x+1}{x-2}$
a) state the domain of G
b) find the x - and y-intercepts

c) observe the behaviour of G for x-values approaching 2 from the right;
d) observe the behaviour of G for x-values approaching 2 from the left;
e) observe the behaviour of G for x-values approaching infinity;
f) observe the behaviour of G for x-values approaching negative infinity;

Definition 1:

If $\boldsymbol{f}(\boldsymbol{x}) \rightarrow \pm \infty$ (read: f approaches positive or negative infinity) as $\boldsymbol{x} \rightarrow \boldsymbol{a}^{ \pm}$(read: x approaches \boldsymbol{a} from the right or left), then the graph of f has the vertical asymptote given by the equation $\boldsymbol{x}=\boldsymbol{a}$.

a. $\begin{aligned} f(x) & \rightarrow \infty \\ \text { as } x & \rightarrow a^{+}\end{aligned}$

$\begin{aligned} \text { b. } f(x) & \rightarrow \infty \\ \text { as } x & \rightarrow a^{-}\end{aligned}$

c. $\begin{aligned} f(x) & \rightarrow-\infty \\ \text { as } x & \rightarrow a^{+}\end{aligned}$

d. $f(x) \rightarrow-\infty$

Theorem 1 (Vertical Asymptotes):

If $f(x)=\frac{P(x)}{Q(x)}$, where $P(x)$ and $Q(x)$ have no common factors, and $a \in \mathbb{R}$ is a zero of the denominator $Q(x)$, then f has the vertical asymptote $\boldsymbol{x}=\boldsymbol{a}$.

Example 2: Find the equations of all vertical asymptotes of the given function. Then using a graphing calculator, show the approximate graph of the function.
a) $f(x)=\frac{x-3}{x^{2}-5 x+6}$
b) $g(x)=\frac{x^{2}+1}{x^{3}-4 x^{2}+4 x}$

Observation: Let \boldsymbol{a} be the zero of multiplicity \boldsymbol{n} of the denominator $Q(x)$. Then the graph of a rational function $f(x)=\frac{P(x)}{Q(x)}$ around \boldsymbol{a} looks as follows: for ODD n :

or

for $\mathbf{E V E N} \boldsymbol{n}$:

Definition 2:

If $\boldsymbol{f}(\boldsymbol{x}) \rightarrow \boldsymbol{b}$ (read: f approaches \boldsymbol{b}) as $\boldsymbol{x} \rightarrow \pm \infty$ (read: x approaches positive or negative infinity), then the graph of f has the horizontal asymptote given by the equation $\boldsymbol{y}=\boldsymbol{b}$.

Definition 3:

If $\boldsymbol{f}(\boldsymbol{x}) \rightarrow \boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}(m \neq 0)$ as $x \rightarrow \pm \infty$, then the graph of f has the slant asymptote given by the equation $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$.

Theorem 1 (Horizontal or Slant(curved) Asymptotes):

Let $f(x)=\frac{P(x)}{Q(x)}=\frac{a_{n} x^{n}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+\cdots+b_{1} x+b_{0}}$, where $a_{n}, b_{m} \neq 0$. Then the graph of f has the following asymptotes:

- horizontal asymptote: $y=0$, if $m>n$;

$f(x)=\frac{2 x^{3}+5 x^{2}+1}{x^{2}+x+3}$
- horizontal asymptote: $y=\frac{a_{n}}{b_{m}}$, if $m=n$;
- slant (or curved) asymptote: $y=$ quotient from division of $P(x)$ by $Q(x)$, if $m<n$

Example 3: Find the equations of a horizontal or slant asymptote of the given function. Then using a graphing calculator, show the approximate graph of the function.
a) $f(x)=\frac{2 x^{4}}{x^{4}+1}$
b) $g(x)=\frac{x^{2}-9}{2 x-4}$
c) $\quad h(x)=\frac{x-1}{x^{2}-x-6}$

How to graph a rational function?

- factor the numerator and denominator
- find the domain
- cancel common factors - roots of common factors correspond to holes in the graph
- find all asymptotes and graph them as dashed lines
- find all intercepts - watch multiplicity of x intercepts to know if the graph crosses x-axis or not

Example: $\quad f(x)=\frac{x+2}{x^{2}-4}$

- check the symmetry (function even or odd)
- check the behaviour near asymptotes
- check some additional points if needed

Example 3: Graph $f(x)=\frac{x^{2}}{x^{2}-x-2}$.

Example 4: Graph $f(x)=\frac{x^{3}}{x^{2}+2}$.

Example 5: A cylindrical soft drink can is to be made so that it will have a volume of 354 millilitres. Let \boldsymbol{r} be the radius of the can in centimetres. Then, the total surface area of the can A, in square centimetres, is given by the rational function $A(r)=\frac{2 \pi r^{3}+708}{r}$.
a) Using a graphing calculator, graph \boldsymbol{A} and find the \boldsymbol{r}-value that produces the minimum surface area of the can.
b) What is the minimum surface area?
c) Explain the meaning of: if $r \rightarrow \infty$, then $A \rightarrow 2 \pi r^{2}$

