- 1. Factor out the greatest common factor. Simplify the remaining factor, if possible.
 - a) $6k^3 36k^4 48k^5$
 - c) (3x+2)(x-4)-(3x+2)(x+8)
 - e) $x^{\frac{1}{3}} 7x^{\frac{4}{3}}$
 - g) $0.18x + 0.6x^2$

- b) $15v^3z^3 27v^2z^4 + 3vz^3$
- d) $2(5-x)^3-3(5-x)^2$
- f) $2x^{-\frac{1}{2}} 5x^{-\frac{3}{2}}$
- h) $3a^{n+1} + 6a^n 15a^{n+2}$

- 2. Factor by grouping.
 - a) $b^3 b^2 + 2b 2$
 - c) $2xy + x^2y 6 3x$

- b) $y^3 + 8y^2 5y 40$
- d) $x^3v^2 3 3v^2 + x^3$
- 3. Factor trinomial. Remember to factor out the GCF first, if possible.
 - a) $p^2 12p + 27$
 - c) $m^4 + 12m^2 45$
 - e) $8x^2 6x 9$
 - g) $14x^4 19x^3 3x^2$
 - i) $3x^6 + 4x^3 4$
 - k) $4(x-y)^2-23(x-y)-6$

- b) $x^2y^2 + 11xy + 18$
- d) $a^2 7ab + 12b^2$
- f) $8x + 30x^2 6$
- h) $-15a^2 70a + 120$
- j) $4x^{2a} 4x^a 3$
- 1) $2k^2(5-y) + 7k(y-5) + 5(5-y)$
- 4. Which of the binomials are differences of squares?
 - a) $64 a^2$ b) $2x^2 25$
- c) $k^2 + 9$
- d) $4z^2 49$

- 5. Which of the binomials are sums or differences of cubes?
 - a) $64 + r^3$
- b) $125 p^6$
- c) $9x^3 + 125$
- d) $(x + y)^3 1$

- 6. Which of the trinomials are perfect squares?
- a) $x^2 8x 16$ b) $4m^2 20m + 25$ c) $9z^4 + 30z^2 + 25$ d) $25a^2 45a + 81$
- 7. Use special factoring formulas to factor completely the given polynomials.
 - a) $36p^2 25$
 - c) $18x^3 50x$
 - e) $9x^2 + 12x + 4$
 - g) $49p^4 84p^2q + 36q^2$
 - i) $x^2 2xy + y^2 25$
 - k) $n^4 625$
 - m) $64a^3 27b^3$
 - o) $(a+1)^3 b^6$
 - q) $y^4 + y^3 + y + 1$
 - s) $24x^{2a} 6$

- b) $64 (x + 2y)^2$
- d) $0.04x^2 0.09v^2$
- f) $5c^3 + 20c^2 + 20c$
- h) $x^2y 25y + 3x^2 75$
- j) $9x^{2n} 6x^n + 1$
- 1) $(2x-1)^2 + 8(2x-1) + 16$
- n) $250x^3 + 54v^3$
- p) $-x^2 y^2 + 2xy + 9$
- r) $x^2 + 6x y^2 + 9$
- t) $a^{2n+1} 2a^{n+1} 15a$

- 8. Show how the geometric model can be used to verify the special factoring formula.
 - **a.** $a^2 + 2ab + b^2 = (a + b)^2$

b. $a^2 - b^2 = (a + b)(a - b)$

FOR INDIVIDUAL OR GROUP WORK

The binomial $x^6 - y^6$ may be considered either as a difference of squares or a difference of cubes. Work Exercises 65–70 in order.

- **65.** Factor $x^6 y^6$ by first factoring as a difference of squares. Then factor further by considering one of the factors as a sum of cubes and the other factor as a difference of cubes.
- **66.** Based on your answer in **Exercise 65**, fill in the blank with the correct factors so that $x^6 y^6$ is factored completely.

$$x^6 - y^6 = (x - y)(x + y)$$

- 67. Factor $x^6 y^6$ by first factoring as a difference of cubes. Then factor further by considering one of the factors as a difference of squares.
- **68.** Based on your answer in **Exercise 67**, fill in the blank with the correct factor so that $x^6 y^6$ is factored.

$$x^6 - y^6 = (x - y)(x + y)$$

- 69. Notice that the factor you wrote in the blank in **Exercise 68** is a fourth-degree polynomial, while the two factors you wrote in the blank in **Exercise 66** are both second-degree polynomials. What must be true about the product of the two factors you wrote in the blank in **Exercise 66?** Verify this.
- 70. If you have a choice of factoring as a difference of squares or a difference of cubes, how should you start to more easily obtain the completely factored form of the polynomial? Base the answer on your results in Exercises 65–69.