Operation of taking *n*-th degree root is a reverse process to rising to a power of *n*.

index (order, degree) radical
Definition:
$$\sqrt[n]{a} = b \Leftrightarrow b^n = a$$

radical sign

Notice! If *n* is even, the above definition allows for dual answer. For example if n = 2 and a = 4, then according to the definition, *b* could be 2 or -2.

We would like to have a uniquely defined answer, so we agree to take the **positive answer** only. This is called the **principal root**.

So
$$\sqrt[even]{positive} = positive}$$
; also notice that $\sqrt[even]{negative} = DNE$

We don't have such problems when *n* is **odd**.

 $\sqrt[odd]{positive} = positive$

and

 $\sqrt[odd]{negative} = negative$

Example 1: Simplify radicals.

a)	$\sqrt[4]{16} =$	b)	$\sqrt[5]{-32} =$
	2 0		0625

- c) $\sqrt[3]{\frac{8}{27}} =$ d) $\sqrt{\frac{.0625}{.49}} =$ e) $\sqrt[8]{5^8} =$ f) $\sqrt[2011]{5^{2011}} =$
- g) $\sqrt[10]{(-3)^{10}} =$ h) $\sqrt[9]{(-3)^9} =$

Notice!	If <i>n</i> is even,	$\sqrt[n]{x^n} = \begin{cases} x, & \text{if } x \ge 0\\ -x, & \text{if } x < 0 \end{cases} = x $
	If <i>n</i> is odd ,	$\sqrt[n]{x^n} = x$

Example 2: Simplify radicals.

a) $\sqrt{a^2} =$ b) $\sqrt{x^6} =$

c)
$$\sqrt[4]{(-x)^4} =$$
 d) $\sqrt[3]{y^3} =$

e) $-\sqrt[8]{(-x)^8} =$ f) $-\sqrt[5]{-x^5} =$

Math 085 (Anna K.)Lecture 8.1Example 3: Using a calculator, approximate each radical to 2 decimal places.a) $\sqrt{2} \approx$ b) $\sqrt{3} \approx$ c) $\sqrt[3]{10} \approx$ d) $\sqrt[5]{100} \approx$

Example 4: Estimate each root to the nearest whole number without a calculator.a) $\sqrt{17} \approx$ b) $\sqrt{70} \approx$ c) $\sqrt{115} \approx$ d) $\sqrt{200} \approx$

Heron's Formula (to find the area of a triangle, knowing the lengths of its sides)

Suppose that a, b, and c are the lengths of the sides of a triangle. Let $s = \frac{1}{2}(a + b + c)$ be its *semiperimeter*. Then

$$\mathcal{A} = \sqrt{s(s-a)(s-b)(s-c)}$$

represents the area of this triangle.

Example 5:

Find the area of the Bermuda Triangle, to the nearest thousand square miles, if the "sides" of this triangle measure approximately 850 mi, 925 mi, and 1300 mi.

Example 6: Graph each function and state its domain and range.

