Math 085 (Anna K.)

8.2 Rational Exponents

Notation: $\sqrt[n]{x} = x^{\frac{1}{n}}$ and generally $\sqrt[n]{x^m} = \left(\sqrt[n]{x}\right)^m = x^{\frac{m}{n}}$

The index of the radical becomes the denominator of the rational exponent.

- *Example 1:* Change from radical to exponential form (or the other way around) and simplify if possible.
- a) $\sqrt{5} =$ b) $\sqrt[3]{2} =$ c) $\sqrt[5]{3^2} =$
- d) $\sqrt[4]{25} =$ e) $\sqrt{16x^4y^2} =$
- f) $(\sqrt[3]{xy^2})^5 =$ g) $x^{\frac{2}{7}} =$ h) $(3x)^{-\frac{2}{5}} =$
- i) $3x^{-\frac{1}{2}} =$ j) $(x+2y)^{\frac{2}{3}} =$

Example 2: Evaluate. (*Hint:* It is helpful to change numbers into **powers of prime numbers**, if possible)

- a) $8^{-\frac{1}{3}} =$ b) $-64^{\frac{2}{3}} =$
- c) $(-125)^{-\frac{1}{3}} =$ d) $\left(\frac{16}{81}\right)^{-\frac{3}{4}} =$

Example 3: Simplify. Assume that all variables are positive. Leave your answer in a simplified radical form. (*Hint:* convert to rational exponents first.)

- a) $\sqrt{5^{10}} =$ b) $\sqrt[6]{x^{18}} =$
- c) $\sqrt[4]{y^2} =$ d) $\sqrt{a} \cdot \sqrt[3]{a^2} =$
- e) $\sqrt[4]{x2} =$ f) $\frac{\sqrt[4]{x}}{\sqrt[5]{x}} =$

Math 085 (Anna K.)

Lecture 8.2

Example 4: Simplify. Assume that all variables are positive. Leave your answer with positive exponents.

a)
$$x^{\frac{2}{5}} \cdot x^{-\frac{3}{4}} =$$
 b) $\frac{a^{\frac{1}{3}}}{a^{-\frac{1}{4}} \cdot a^{\frac{2}{3}}} =$

c)
$$\left(\frac{p^{-\frac{1}{4}} \cdot q^{-\frac{3}{2}}}{3^{-1} \cdot p^{-2} \cdot q^{-\frac{3}{2}}}\right)^{-2} =$$

d)
$$7y^{\frac{8}{5}}\left(y^{-\frac{8}{5}} - 3y^{-\frac{3}{5}}\right) =$$

- *Example 5:* Simplify. Assume that all variables are positive. Leave your answer in a simplified exponential form.
- a) $\sqrt[3]{\frac{4}{\sqrt{x}}} =$ b) $\frac{\sqrt[4]{x^5}}{\sqrt[3]{x^2}} =$

Example 6: Find the domain of the function $f(x) = (x+1)^{\frac{1}{2}}(x-2)^{-\frac{1}{3}}$.